Edge Detection 邊緣檢測
Aims 宗旨
- Intensity Images 強度圖像
- Edge Detection 邊緣檢測
- Convolution 卷積
Intensity Images 強度圖像
- An intensity image is a data matrix, whose values represent intensities within some range. 強度圖像是一個數據矩陣,其值表示某個範圍內的強度。
- represented as a single matrix, with each element of the matrix corresponding to one image pixel 強度圖像由一個矩陣表示,矩陣中的每個元素對應一個圖像像素。
- In matlab: To display an intensity image, use the imagesc ("image scale") function 用 imagesc 函數顯示強度圖像。
Indexed Images 索引圖像
- An indexed image consists of a data matrix, X, and a colormap matrix, map. 索引圖像由數據矩陣 X 和 colormap 矩陣 map 組成。
- map is an m-by-3 array of class double containing floating-point values in the range [0, 1]. map 是 double 類的 m×3 數組,包含 [0, 1] 範圍內的浮點值
- Each row of map specifies the red, green, and blue components of a single color. map 的每一行指定了一個單獨顏色的紅、綠、藍分量。
Guess the image 猜圖
Intensity gradients 強度梯度
The image is a function mapping coordinates to intensity 圖像是將坐標映射到強度 的函數
The gradient of the intensity is a vector 強度的梯度是一個向量
We can think of the gradient as having an x and a y component 梯度有 x 和 y 兩個分量
Approximating the gradient 近似梯度
Our image is discrete with pixels indexed by i and j 我們的圖像是由 i 和 j 索引的像素
We want to estimated in the same place 我們想在同一個地方估計
So we use a 2x2 mask instead 所以我們改用 2x2 掩碼
For each mask of weights you multiply the corresponding pixel by the weight and sum over all pixels 對於每個權重掩碼,您將相應的像素乘以權重並對所有像素求和
Other edge detectors 其他邊緣檢測器
Roberts 羅伯茨
Sobel 索貝爾
Approximating the gradient 近似梯度
- Sobel 索貝爾
Convolution 卷積
- Convolution is the computation of weighted sums of image pixels. 卷積是圖像像素的加權和計算。
- For each pixel [i,j] in the image, the value h[i,j] is calculated by translating the mask to pixel [i,j] and taking the weighted sum of pixels in neighbourhood of [i,j] 針對圖像中的每個像素 [i,j],通過將掩碼平移到像素 [i,j] 並對 [i,j] 的鄰域像素進行加權求和,計算出 h[i,j] 的值。
What do these filters do 這些過濾器有什麼作用
- Steps:
- Take image 拍照
- Convolve mask with image for each direction 卷積遮罩與圖像
- Calculate derivatives Gx and Gy 計算導數 Gx 和 Gy
- Calculate magnitude = 計算震級 =
Filtering 過濾
- We could detect edges by calculating the intensity change (gradient) across the image 我們可以通過計算圖像中的強度變化(梯度)來檢測邊緣
- We could implement this using the idea of filtering 我們可以使用過濾的概念來實現這一點
Linear filtering: the algorithm 線性過濾:算法
Highly Directed Work 高度導向的工作
- Gaussian (Canny) edge detection 高斯(Canny)邊緣檢測
- Second order operators 二階算子
- Thresholding 閾值